Inventors:
Nicolas Bazan - New Orleans LA, US
Charles Serhan - Needham MA, US
Victor Marcheselli - Covington LA, US
Pranab Mukherjee - Metairie LA, US
Sebastian Barreiro - Metairie LA, US
Walter Lukiw - Slidell LA, US
Song Hong - Brookline MA, US
Karsten Gronert - New Fairfield CT, US
Alberto Musto - New Orleans LA, US
International Classification:
A61K031/202
Abstract:
A unique DHA product, 10, 17S-docosatriene (“Neuroprotectin D1” or “NPD1”), was found to provide surprisingly effective neuroprotection when administered right after an experimental stroke. Moreover, both nerve cells and retinal pigment epithelial (RPE) cells were found to synthesize 10,17S-docosatriene (NPD1) from DHA. NPD1 also potently counteracted HO/TNFα oxidative stress-mediated cell apoptotic damage. Under the same oxidative-stress conditions, NPD1 up-regulated the anti-apoptotic Bcl-2 proteins, Bcl-2 and Bcl-xL, and decreased expression of the pro-apoptotic proteins, Bad and Bax. Moreover, in RPE cells NPD1 inhibited oxidative stress-induced caspase-3 activation, IL-1β-stimulated human COX-2 promoter expression, and apoptosis due to N-retinylidene-N-retinylethanolamine (A2E). Overall, NPD1 protected both nerve and retinal pigment epithelial cells from cellular apoptosis and damage due to oxidative stress. NPD1 concentration in the brain of Alzheimer's patients was found to be significantly decreased from that of controls. In cultured human brain cells, NPD1 synthesis was up-regulated by neuroprotective soluble β amyloid, and NPD1 was found to inhibit secretion of toxic β amyloid peptides.