Inventors:
Rudolph A. Garriga - Los Altos CA
Assignee:
Anon, Inc. - Los Altos CA
International Classification:
H01L 2100
US Classification:
118715, 156345, 20429825, 20429835
Abstract:
A cluster tool architecture and method are provided for processing substrates by exposure to a process environment, including a reactive gas, such as sulfur trioxide, as well as prior and subsequent treatments thereto. The cluster tool architecture comprises: (a) an atmospheric processing area, maintained at atmospheric pressure or higher; (b) cassette means for introducing a plurality of the substrates into the atmospheric processing area; (c) at least one process station in the atmospheric processing area; (d) an enclosed vacuum processing area, maintained at a vacuum pressure; (e) a first buffer station between the atmospheric processing area and the enclosed vacuum processing area; (f) at least one process station in the enclosed vacuum processing area isolated from the enclosed vacuum processing area by an isolation valve for exposing the substrates to the process environment; (g) a second buffer station between the atmospheric processing area and the enclosed vacuum processing area; (h) an atmospheric transfer arm in the atmospheric processing area for transferring the substrates from the cassette means between one of the buffer stations and at least one process station in the atmospheric processing area and then to the cassette means; and (i) a vacuum transfer arm in the enclosed vacuum processing area for transferring the substrates from one of the buffer stations to one of the vacuum process stations in the enclosed vacuum processing area and from that vacuum process station in the enclosed vacuum processing area to the buffer station, wherein both buffer stations are equally accessible to both the atmospheric transfer arm and the vacuum transfer arm. The cluster tool architecture integrates atmospheric or high pressure processing with vacuum processing. Since integration allows random access, there is a freedom of programming process flow.